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Summary and Recommendations 
	
MPAS-A	is	a	modern	global	numerical	weather	forecast	model,	coded	almost	exclusively	in	Fortran.	It	
lives	 on	 an	 icosahedral	mesh,	which	mitigates	 the	 notorious	 “pole	 problem”	 found	 in	 earlier	 global	
models	that	utilized	Gaussian	grids	or	similar	 latitude/longitude	grids.	MPAS	employs	the	C-grid	with	
computations	at	the	cell	centers,	edges	and	vertices.	The	code	is	well-written,	well-documented,	and	
the	development	team	has	made	stable	releases	of	the	code	and	documentation	publicly	available	at	
github.com.		
	
Coding	 strategy	 in	MPAS	 is	well-designed,	with	 the	 computations	 of	 shared	 edge	 and	 vertex	 values	
limited	 to	 “owner-computes”.	 This	 strategy	 saves	 2X	 the	 computations	 on	 edges	 and	 3X	 the	
computations	 on	 vertices	 as	 compared	 to	 the	 situation	where	 each	 cell	 sharing	 the	 edge	 or	 vertex	
redundantly	computes	 the	value.	The	recent	 implementation	of	OpenMP	threading	capability	by	 the	
MPAS	team	gives	slightly	better	performance	than	the	pure	MPI	case.	A	good	OpenMP	implementation	
is	 critical	 to	 achieving	 good	 performance	 on	 the	MIC	 and	 GPU	 fine-grain	 architectures,	 particularly	
when	employing	a	high	core	count	relative	to	horizontal	resolution	as	might	be	necessary	to	achieve	
time	to	solution	targets	when	run	in	forecast	mode.	
	
The	 code	 scales	 well	 in	 a	 strong-scaling	 sense	 of	 adding	 processors	 but	 keeping	 spatial	 resolution	
invariant,	 in	 fact	 showing	 super-scaling	 due	 to	 cache	 effects	 for	 some	 code	 regions	 at	 some	 core	
counts.	An	exception	to	this	scaling	behavior	 is	 the	MPI	communication,	which	 is	only	slightly	better	
than	 flat	 when	 moving	 to	 higher	 process	 counts	 at	 the	 same	 resolution.	 Adding	 vectorization	 and	
thread	 parallelism	 to	 the	 MPI	 message	 packing	 and	 unpacking	 routines,	 we	 were	 able	 to	 improve	
communications	performance	by	up	to	60%.	However,	communications	scaling	remained	almost	flat.	
Numerous	possible	user-code	improvements	to	the	communication	are	possible,	and	are	described	in	
detail	 in	 the	 section	 “Performance	 Profile	 and	 Scaling”	 below.	 The	 MPAS	 development	 team	 is	
currently	exploring	these	solutions,	one	of	which	will	potentially	eliminate	the	need	for	a	problematic	
I/O	library	(PIO)	which	sits	on	top	of	netCDF	libraries	pnetcdf	and	netcdf4.		
	
Porting	MPAS	code	to	the	GPU	and	MIC	processors	was	straightforward.	The	entire	model	was	ported	
and	 run	 on	 the	 latest	 generation	 MIC	 KNL	 processor.	 In	 addition,	 a	 standalone	 kernel	 routine,	
representative	 of	 the	 dynamics	 code	 in	 general,	 was	 extracted	 from	 the	 model	 to	 permit	 deeper	
examination	and	performance	comparison.	GPU	performance	 results	 (2X	slower	 than	 the	CPU)	were	
disappointing	because	they	were	significantly	less	than	we	observed	with	the	NIM	(1.7X	faster	than	the	
CPU).	 This	 is	 likely	 due	 to	 a	 small	 number	 of	 vertical	 levels	 (55)	 in	 the	 kernel,	 and	 other	 factors	
suggested	 in	 the	 report.	 Intel’s	 Knight’s	 Landing	 processor	 (KNL)	 demonstrated	 significant	 speedup	
over	the	previous	generation	Knights	Corner	processor	(KNC),	 largely	due	to	fast	memory	(MCDRAM)	



	

	

on	the	chip.		NVIDIA’s	Pascal	chip,	expected	in	August	2016,	is	packaged	with	similar	memory,	that	will	
likely	give	a	2-3X	boost	in	application	performance.	
	
Based	on	our	analysis,	we	offer	the	following	recommendations:	

• Improve	portability	of	the	PIO	library	or	find	an	alternative	
• Test	on	alternative	compilers	including	Cray,	IBM,	PGI,	etc.	
• Improve	scalability	of	inter-process	communications	
• Explore	additional	fine-grain	optimizations	including	running	a	case	with	more	vertical	levels	
• Explore	using	redundant	calculations	of	edges	and	vertices	to	decrease	inter-loop	dependencies	

to	improve	fine-grain	performance	
• Further	exploration	of	the	potential	benefits	of	dimensioning	arrays	via	compile-time	constants	

for	all	dimensions.	

Background 
	
MPAS-A	 lives	on	an	 icosahedral	mesh,	with	options	to	define	refinement	regions	(higher	resolutions)	
over	portions	of	the	globe	of	special	interest.	Our	primary	analysis	focused	only	on	the	quasi-uniform	
resolutions.	We	initially	used	the	publicly	released	MPAS-A	(atmospheric)	code	(v4.0)	for	our	analysis	
work.	This	version	is	a	pure-MPI	code.	
	
The	MPAS	 developers	 recently	 implemented	OpenMP	 threading,	 and	we	were	 able	 to	 perform	 our	
runs	with	this	hybrid	OpenMP/MPI	version	of	the	code.	OpenMP	capability	is	critical	in	order	to	make	
optimal	use	of	 fine-grain	architectures	which	enable	 it,	 such	as	 Intel’s	MIC	platform.	We	 relied	on	a	
version	of	the	code	obtained	from	Michael	Duda	of	NCAR.	The	packaged	file	which	formed	the	basis	of	
our	analysis	was	MPAS_20160325.tar.gz.		
	
Initial	work	on	the	MPAS	dynamical	core	by	NOAA/ESRL	was	done	by	Tom	Henderson,	who	has	since	
left	NOAA.	Much	of	his	work,	along	with	assistance	by	the	MPAS	development	team	at	NCAR	(primarily	
Michael	Duda	and	Ryan	Cabell),	has	been	 incorporated	 into	the	MPAS	developer	repository,	and	will	
eventually	be	migrated	to	the	publicly	released	code.	A	summary	of	this	optimization	work	on	a	single-
threaded	kernel	is	presented	in	Table	1	and	Table	2	below.	The	meaning	of	each	column	is	as	follows:	
“IVDEP”	 is	 a	 compiler	 directive	 which	 was	 needed	 in	 some	 cases	 in	 order	 to	 get	 the	 compiler	 to	
vectorize	 the	 loop;	 “xAVX”	 is	 a	 compiler	 flag	which	 indicates	 that	 the	 target	 architecture	 supports	 a	
certain	 level	 of	 vector	 instruction.	 “noptr”	 is	 a	 code	 optimization	which	 hides	 the	 fact	 that	 Fortran	
pointers	are	being	used	 in	some	cases,	where	the	compiler	may	not	be	as	aggressive	as	 it	otherwise	
could	be;	“const”	is	a	code	optimization	whereby	compile-time	constants	are	used	instead	of	run-time	
variables	to	define	array	sizes	and	loop	ranges--compilers	can	sometimes	generate	more	efficient	code	
if	 these	 items	 are	 known	 at	 compile	 time;	 “nodiv”	 is	 a	 code	 optimization	 whereby	 floating	 point	
divisions	 were	 replaced	 by	 multiplications	 by	 reciprocal,	 since	 floating	 point	 divisions	 can	 be	 very	
expensive.	
	
Further	 work	 was	 done	 on	 this	 “atm_compute_dyn_tend”	 kernel.	 Initially,	 the	 routine	 only	 ran	 in	
single-threaded	mode.	 In	 order	 to	 re-enable	 threaded	 capability	 (required	 for	 comparison	 between	



	

	

CPU,	GPU	and	MIC),	we	 revised	 the	embedded	horizontal	 loops	 to	 iterate	over	 the	entire	horizontal	
domain,	 with	 implied	 OpenMP	 synchronization	 at	 the	 end	 of	 each	 threaded	 loop	 replacing	 !$OMP	
BARRIER	statements	in	the	original	code.	Motivation	for	this	approach	is	described	below,	along	with	
results	of	various	further	optimizations	in	the	single-threaded	code,	and	single-node	parallel	results.	
	
MPIxOMP	 Unmodified	 IVDEP	 xAVX	 noptr	 const	 nodiv	
16x0	 0.63639	 0.59718	 0.54199	 0.47944	 0.45516	 0.40898	
2x8	 0.81999	 0.68193	 0.61722	 0.60083	 0.44200	 0.39884	
Table	 1:	 Raw	 data	 for	 various	 performance	 improvements	 to	 routine	 "atm_compute_dyn_tend"	 as	 run	 on	 a	 single	 node	 of	 NCAR’s	
“Yellowstone”	machine,	an	Intel	SandyBridge	CPU	machine	with	16	cores	per	node.	Reported	times	are	for	10242	horizontal	points,	in	wall	
clock	seconds.	

	
MPIxOMP	 Unmodified	 IVDEP	 xAVX	 noptr	 const	 nodiv	
16x0	 1.00	 1.07	 1.17	 1.33	 1.40	 1.56	
2x8	 1.00	 1.20	 1.33	 1.36	 1.86	 2.06	
Table	2:	 Same	data	as	above,	but	normalized	by	percentage	 speedup	over	 the	unmodified	 code.	 Speedup	 is	 cumulative	 reading	 left	 to	
right.	In	other	words,	speedup	listed	under	“nodiv”	includes	all	the	other	optimizations	to	the	left	of	it.	

In	MPAS-A,	some	variables	live	on	cell	centers,	some	on	cell	edges,	and	still	others	on	cell	vertices.	In	
this	 structure,	 individual	 cells	 share	both	edge	 and	 vertex	 values	with	other	 cells.	 There	 are	distinct	
possible	 computational	 approaches	 to	 dealing	 with	 shared	 edges	 and	 vertices:	 They	 can	 either	 be	
redundantly	computed	by	the	cells	that	share	them,	or	they	can	be	computed	just	once,	then	shared	
by	all	cells	that	require	the	values.	The	former	approach	is	somewhat	simpler	but	wastes	computation	
(computing	 the	 same	 thing	 twice	or	 thrice),	while	 the	 latter	approach	can	be	more	 complicated	but	
saves	redundant	computations.	MPAS-A	takes	the	latter	approach.		
	
Since	the	extracted	(single-threaded)	kernel	looped	over	the	entire	horizontal	domain,	we	did	not	have	
the	information	at	hand	how	to	split	up	among	participating	threads	the	exact	number	of	cells,	edges,	
and	vertices	for	each	thread	to	loop	over	in	order	to	still	get	correct	answers.	To	solve	this	problem,	we	
recoded	 the	 kernel	 in	 the	 following	way.	Code	 sections	preceding	 !$OMP	BARRIER	 statements	were	
made	into	individual	subroutines.	Then	a	!$OMP	PARALLEL	DO	statement	was	placed	in	front	of	each	
embedded	loop	over	cells,	edges,	or	vertices	which	had	been	designed	to	run	in	threaded	mode.	This	
approach	has	two	distinct	advantages:	First,	explicit	barriers	previously	embedded	within	 loops	were	
replaced	by	the	implicit	barrier	at	the	termination	of	loops	adorned	with	!$OMP	PARALLEL	DO.	We	find	
this	 approach	 more	 readable	 and	 understandable.	 The	 second	 advantage	 to	 replacing	 embedded	
barriers	with	implicit	barriers	at	the	end	of	loops	is	that	the	iteration	count	for	individual	threads	need	
not	be	pre-computed;	all	calculations	iterate	over	the	full	count	of	cells,	edges,	or	vertices	assigned	to	
the	MPI	 task.	These	code	modifications	demonstrated	 similar	performance	compared	 to	 the	original	
code.	

Performance Profile and Scaling 
	
Figure	1	below	profiles	the	most	expensive	code	regions	in	the	MPAS	dynamical	core,	as	run	on	NOAA’s	
Haswell-based	supercomputer	“theia”	at	a	relatively	coarse	resolution	of	40962	horizontal	grid	points	



	

	

or	 roughly	 111	 km.	 Runtimes	 are	 presented	 for	 a	 6-hour	 simulation.	 Profiling	was	 accomplished	 by	
enabling	the	auto-profiling	capability	in	the	GPTL	timing	library,	in	which	library	start	and	stop	calls	are	
attached	to	compiler-generated	“hooks”	at	function	entry	and	exit	points.	Since	it	was	not	trivial	to	run	
with	 physics	 disabled,	 a	 dynamics-only	 profile	 was	 obtained	 by	 installing	 an	 MPI	 barrier	 after	
completion	of	the	physics	just	prior	to	the	dynamics	loop.	In	addition,	within	the	dynamics	calculation	
physics	tendencies	are	calculated	in	a	routine	“physics_addtend”.	Since	this	routine	does	not	yet	have	
OpenMP	threading	enabled,	it	is	not	included	in	the	profile.		

	
Figure	1:	Timing		profile	for	MPAS	dynamics	for	various	node	counts	on	NOAA	machine	“theia”	(Intel	Haswell	processors).	

Computational	scaling	(all	regions	except	“exch_halo_real”	in	the	figure)	is	excellent	from	1	through	6	
nodes,	with	 some	regions	achieving	 super-scaling	 for	 some	node	counts.	Cache	effects	are	 the	most	
likely	 cause	of	 the	 super-scaling.	 If	 the	 scaling	of	 all	 computational	 components	were	 linear,	 a	high-
resolution	run	of	3.5	km	would	take	the	same	amount	of	memory,	and	wall	clock	time	per	time	step	as	
the	 coarse-resolution	 test	 case	 presented	 here	 by	 employing	 6144	 nodes.	 Memory	 use	 at	 these	
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resolutions	and	node	counts	does	not	present	a	problem,	as	the	high-water	mark	for	the	runs	we	did	
was	only	13	GB	when	run	on	a	single	node.	
	
Also	 in	Figure	1,	MPI	communication	of	halo	regions	 (“exch_halo_real”)	shows	some	scaling	 (moving	
from	11.318	seconds	on	1	node	to	8.83	seconds	on	6	nodes),	but	is	nearly	flat	and	therefore	represents	
a	potential	area	of	concern	 regarding	computational	performance	when	moving	 to	higher	horizontal	
resolutions	and	higher	node	counts.	We	wondered	if	perhaps	load	imbalance	in	computational	regions	
was	being	misrepresented	as	communication	time.	So	we	added	artificial,	 timed,	MPI	barriers	 in	key	
sections	of	code	after	computations	and	before	communication.	The	result	was	that	the	8.84	seconds	
taken	by	communication	(rightmost	entry	in	Figure	2)	became	about	8.3	seconds.	This	indicates	some	
imbalance,	but	not	nearly	enough	to	change	the	overall	conclusion.	
	

	
Figure	2:	Impact	of	adding	vectorization	(!$IVDEP	directive)	and	OpenMP	threading	to	packing	and	unpacking	of	MPI	messages	on	“theia”.	
Times	labeled	“original”	are	the	same	as	in	Figure	1	above.	“Optimized”	means	threading	was	added	to	the	outer	loop,	and	the	inner	loop	
was	vectorized.	

We	 have	 spoken	 with	 the	 developers	 about	 improving	MPI	 communication	 behavior,	 and	 they	 are	
aware	of	 some	modifications	 that	 can	help.	 Specifically,	one	approach	being	worked	on	 is	 similar	 to	
that	 taken	with	 the	 NIM	model	 developed	 at	 NOAA/ESRL.	 It	 involves	 strategic	 placement	 of	 points	
which	will	need	 to	be	communicated	 (halo	points)	 in	a	way	 that	better	utilizes	 cache	and	may	even	
eliminate	the	need	to	copy	(pack)	the	data	prior	to	communication.	
	
Another	advantage	to	improving	the	placement	of	halo	points	is	to	hopefully	eliminate	the	need	for	an	
additional	 communication	 library	 (PIO)	 on	 top	 of	 already-required	 netCDF	 libraries	 pnetcdf	 and	
netcdf4.	We	have	found	the	PIO	library	to	be	difficult	to	build,	and	some	later	versions	of	the	library	
have	both	build	problems	and	run-time	problems	not	encountered	 in	earlier	versions.	Also,	we	have	
found	the	situation	of	libraries	on	top	of	libraries,	possibly	on	top	of	other	libraries	to	be	error-prone	
and	difficult	to	maintain.	
	
Also	of	note	regarding	MPI	communication	is	that	MPAS	packs	its	messages	into	a	contiguous	address	
space	prior	to	sending,	then	unpacks	the	messages	after	the	data	are	received.	In	the	original	code,	the	
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inner	 loop	doesn’t	vectorize.	Also,	 the	outer	 loop	 involving	packing	wasn’t	 threaded	but	can	be	with	
the	addition	of	a	!$OMP	PARALLEL	DO	directive	on	the	outer	loop	of	the	packing/unpacking	code.	The	
impact	 of	 adding	 vectorization	 and	 threading	 to	 these	 loops	 is	 shown	 in	 Figure	 2	 below.	 The	 total	
exchange	 time	still	doesn’t	 scale	very	well,	which	will	 require	 further	 investigation.	But	by	 threading	
and	 vectorizing	 the	 packing	 and	 unpacking,	 the	 overall	 cost	 of	 halo	 exchanges	 drops	 dramatically.	
Depending	on	configuration,	the	speedup	in	the	total	cost	of	data	exchanges	is	between	35%	and	60%.	
	
Other	 possible	 performance	 improvements	 to	 the	MPI	 communication	 strategy	 include	 overlapping	
communication	with	 computation	where	 possible,	 and	 reusing	 exchange	buffers	 rather	 than	 tearing	
down	the	linked	list	of	exchange	buffers	and	recreating	every	time	step.	We	found	a	strange	bug	in	a	
combination	 of	 the	 Intel	 Fortran	 15.*	 compilers	 and	 impi	 5.*	MPI	 libraries	where	 tearing	 down	 the	
linked	list	ran	vastly	slower	(at	least	3	orders	of	magnitude)	than	it	should	have.	We	understand	from	
the	 developers	 that	 they	 are	 currently	 experimenting	 with	 overlapping	 communication	 with	
computation.	

 
Figure	3:	Single-node	dynamics	run	times	on	Haswell	processors	(NOAA		machine	“theia”)		for	mostly	OpenMP	(2	MPI	x	12	threads)	and	
Mostly	MPI	(12	MPI	x	2	threads)	

Figure	3	compares	single-node	MPAS	dycore	performance	running	in	“mostly	MPI”	mode	(12	MPI	x	2	
threads)	vs.	“mostly	OpenMP”	mode	(2	MPI	x	12	threads).	Unlike	Figure	1,	the	data	for	these	runs	was	
gathered	 with	 the	 MPI	 vectorization	 and	 threading	 optimizations	 discussed	 previously.	 Adding	
threading	 to	 MPAS	 did	 improve	 performance	 on	 theia,	 though	 the	 overall	 run	 times	 for	 both	
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configurations	are	close.	The	more	highly	 threaded	case	 (2x12)	 resulted	 in	 improved	communication	
performance	due	to	two	primary	reasons:	The	total	number	of	halo	points	required	to	be	exchanged	
between	regions	will	be	less	because	the	size	of	each	“owned”	region	will	be	greater.	And	since	the	size	
of	each	owned	region	is	larger	than	the	12x2	case,	the	size	of	each	MPI	message	sent/received	will	also	
be	larger	which	minimizes	aggregate	latency	due	to	fewer	messages.	
	
Though	mostly-OpenMP	provided	only	minimal	 computational	 advantage	 over	mostly-MPI	 in	MPAS,	
OpenMP	capability	is	critical	particularly	for	MIC	architectures	(KNC	and	KNL),	where	more	numerous	
but	slower	processor	cores	put	a	larger	strain	on	memory	resources	than	traditional	CPU	architectures.	
A	major	component	of	the	added	overhead	can	be	MPI	library	resources,	so	having	fewer	MPI	tasks	per	
node	is	an	advantage	on	many-core	systems	such	as	MIC.	A	well-structured	OpenMP	implementation	
also	makes	porting	to	GPU	a	more	straightforward	process,	since	the	OpenMP	loops	mark	where	fine-
grain	regions	are	implemented.	

Suitability for Fine-grain Architectures 
	
A. Full dynamical core 
	
The	 MPAS	 development	 team	 has	 successfully	 ported	 the	 entire	 MPAS	 dynamical	 core	 and	 all	
supporting	libraries	to	their	pre-release	KNL	(MIC)	system	at	NCAR.	Initial	results	are	promising.	Shown	
below	(data	courtesy	Michael	Duda	of	the	MPAS	development	team)	in		

Figure	 4	 is	 a	 comparison	 of	 the	 best	 single-node	performance	 results	 obtained	on	 this	 KNL	 system	as	
compared	with	 the	 best	 CPU-based	 results	we	were	 able	 to	 obtain	with	 the	 same	 code	 on	NOAA’s	
“theia”	machine	(same	data	as	in	the	left	column	in	Figure	1	above).	Theia	has	Intel	Haswell	processors,	
which	are	one	revision	older	than	the	newest	CPUs	available	from	Intel	(Broadwell),	while	KNL	is	brand	
new.	But	since	both	are	modern	processors,	and	the	KNL	is	scheduled	to	move	from	64	to	72	processor	
cores	by	its	public	release	date,	we	consider	this	to	be	a	fair	comparison.	

Notable	 in	 Figure	 4	 is	 that	 there	 is	 substantial	 performance	 gain	 on	 the	 KNL	 as	 compared	with	 the	
Haswell	generation	CPU	system.	Though	achieving	this	performance	gain	is	predicated	upon	utilization	
of	MCDRAM,	a	special	type	of	extremely	fast	memory	available	from	Intel	only	on	their	KNL	systems.	
The	NCAR	 KNL	 system	has	 16	GB	 of	MCDRAM	per	 node,	which	was	more	 than	 sufficient	 to	 run	 an	
entire	111	km	MPAS	instantiation.	Utilizing	MCDRAM	requires	no	code	modifications	if	one	wishes	to	
place	the	entire	executable	in	this	fast	memory.	Code	modifications	in	the	form	of	compiler	directives	
and	special	memory	allocation	calls	are	required	if	the	user	wishes	to	use	only	part	of	the	fast	memory	
for	their	run,	while	the	rest	can	reside	in	standard,	slower,	memory.	

The	KNL	results	for	MPAS	are	similar	to	what	we	have	seen	for	other	numerical	forecast	models.	One	
very	nice	characteristic	is	that	placing	the	entire	executable	in	MCDRAM	gives	a	dramatic	speedup,	on	
the	order	of	2-3X	as	compared	with	not	using	MCDRAM.	Likewise,	KNL	generally	gives	a	good	speedup	
as	compared	with	modern	CPU-based	architectures.	
	



	

	

	

Figure	4:	Single-node	dynamics	run	times	on	Haswell	(left),	KNL	+	MCDRAM	(middle),	and	KNL	w/o	MCDRAM	(right).	KNL	data	courtesy	
Michael	Duda	of	the	MPAS	development	team.	

B. Extracted Kernel 
	
Early	 	work	by	NOAA/ESRL	 investigated	fine-grain	suitability	 focused	on	generating	a	standalone	test	
case	for	analysis.	The	subroutine	chosen,	“atm_compute_dyn_tend”	(same	as	described	in	Table	1	and	
Table	2	above),	is	representative	of	the	code	structure	of	the	MPAS	dynamics.	As	shown	Figure	4	above,	
this	routine	consumes	about	30	percent	of	the	total	runtime	of	MPAS	dynamics.	While	the	standalone	
test	is	useful	for	baseline	comparisons	with	no	code	modifications,	it	also	serves	as	a	means	to	explore	
parallelization	 alternatives	 including	 code	 restructuring	 to	 improve	 fine-grain	 performance.	 The	 test	
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case	had	10242	horizontal	points	with	55	vertical	levels.	The	code	was	compiled	and	run	using	double	
precision	floating	point	calculations.	

1. GPU 

	
OpenACC	parallelization	directives	were	added	to	the	code	to	run	on	the	GPU.	 	The	 latest	version	of	
the	PGI	compiler	(version	16.5)	was	used	for	the	work.	Use	of	the	Cray	compiler	is	planned.	Both	the	
kernels	 (!$acc	kernels)	and	parallel	 (!$acc	parallel)	directive	approaches	were	 tried.	These	directives	
were	 wrapped	 in	 cpp	 pre-processing	 directives	 (PGI_PARALLEL	 and	 PGI_KERNELS)	 to	 easily	 switch	
between	approaches.	The	kernels	directive	relies	on	compiler	analysis	to	automatically	determine	loop	
level	parallelism,	data	dependencies,	and	efficient	use	of	memory.	The	parallel	directive	permits	more	
user	control	over	parallelization.	Both	approaches	can	be	useful;	kernels	is	simpler	to	get	applications	
running	quickly	on	the	GPU,	while	parallel	is	often	used	to	fine-tune	performance.	
	
Parallelization	of	the	MPAS	routine	was	trivial.	Using	the	kernels	approach,	 just	two	directives	(!$acc	
kernels	and	!$acc	end	kernels)	were	needed	for	parallelization.	Additionally,	four	!$acc	loop	directives	
were	 used	 to	 identify	 variables	 private	 to	GPU	 calculations.	Depending	 on	 analysis	 by	 the	 compiler,	
private	variables	can	use	either	the	faster	“shared”	memory,	or	slower	“local”	memory.	PGI	diagnostics	
indicated	the	fast	shared	memory	was	used	in	all	of	the	kernels	where	private	variables	were	needed.	
Using	 the	 parallel	 approach,	 !$acc	 parallel	 loop	 directives	 were	 place	 immediately	 above	 each	
horizontal	loop	in	the	routine;	20	such	directives	were	used.	Additional	!$acc	loop	directives	were	used	
to	identify	gang	and	vector	loops	in	the	code	help	the	compiler	with	analysis;	these	turned	out	to	not	
be	necessary	as	they	did	not	improve	performance.	
	
Optimization	of	 the	 routine	 included	 reducing	 the	number	of	 threads	used	 (vector_length)	 from	 the	
default	128	to	64	(GPUs	want	multiples	of	32),	to	more	closely	match	the	55	vertical	levels	used	in	the	
test	 case.	 This	 optimization	 gave	 almost	 a	 2x	 improvement	 in	performance.	Adjustment	of	 compiler	
flags	 gave	 further	 improvement	 including	 the	 use	 of	 “cc35”	 (compute	 capability	 v3.5)	 to	 target	
machine	code	specific	to	the	kepler	hardware,	and	“maxregcount”	to	limit	register	use	by	the	kernels.	
Other	options	were	tried	but	did	not	improve	performance.	
	
Figure	5	compares	the	performance	of	the	extracted	kernel	for	a	single,	same	generation	dual-socket	
Intel	 IvyBridge	 versus	 a	NVIDIA	 K40	GPU.	 CPU	 performance	 is	 shown	 using	 the	 PGI	 (16.5)	 and	 Intel	
(v15.0)	 compiler,	 where	 PGI	 is	 slightly	 faster.	 A	 newer	 version	 of	 the	 Intel	 compiler	 might	 show	
improvement.	Runtimes	using	parallel	and	kernels	directive	were	identical,	indicating	good	automatic	
analysis	by	the	PGI	compiler.	As	indicated	in	Figure	5,	GPU	runtimes	are	2X	slower	than	the	CPU	times.	
Poor	GPU	performance	(NIM	used	the	same	icosahedral	grid,	was	1.7X	faster	than	the	CPU	on	identical	
hardware)	could	be	due	to	several	factors.		First,	the	number	of	vertical	levels	is	only	55,	which	is	not	
able	to	take	full	advantage	of	the	GPU	hardware	(multiples	of	32	is	best),	and	is	significantly	less	than	
needed	to	hide	memory	latency	with	other	computations.		A	test	case	with	128	vertical	levels	is	likely	
to	significantly	improve	GPU	performance	versus	the	CPU.	
	



	

	

	
Figure	5:	Performance	of	the	standalone	kernel	on	same-generation	dual	socket	Intel	IvyBridge	and	NVIDIA	K40	GPU.	Run	times	are	shown	
for	the	CPU	using	the	PGI	and	Intel	compiler,	and	for	the	GPU	using	!$acc	parallel	and	!$acc	kernel	directives	for	parallelization.	
	

A	 second	 reason	 for	 poor	performance	may	be	due	 to	 the	 large	number	of	GPU	kernels	 generated.		
This	 is	partially	caused	by	 interdependencies	between	2D	loops	for	edge,	vertex	and	cell	calculations	
that	are	 inherent	 in	the	C-grid	used	by	MPAS.	Restructuring	 loop	nests,	 fusion,	and	other	techniques	
may	result	in	larger	kernels	with	more	computations	and	fewer	synchronization	points.		In	the	current	
regime,	openACC	parallelization	generates	16	GPU	kernels	in	the	code,	which	required	synchronization	
even	when	none	was	necessary.	However,	we	were	not	able	to	measure	significant	overhead	due	GPU	
kernel	startup	and	synchronization.	Further	investigation	is	warranted.	
	
Finally,	 the	 GPU	 contains	 a	 relatively	 small	 amount	 of	 fast	 memory	 used	 for	 registers	 and	 shared	
memory	that	could	significantly	improve	performance.	GPU	profiling	showed	that	register	pressure	in	
some	of	 the	kernels	 limiting	occupancy,	a	measure	of	 concurrency	on	 the	GPU	device.	Further,	GPU	
shared	 memory	 was	 lightly	 used	 in	 the	 MPAS	 kernels	 with	 opportunities	 to	 significantly	 increase	
performance	 if	 it	 can	be	exploited.	Further	 investigation	 is	needed	 to	understand	and	overcome	the	
performance	issues	noted	here.		

2. MIC 
	
Figure	6	compares	the	performance	of	the	same	atm_compute_dyn_tend	kernel	on	similar-generation	
SandyBridge	(CPU)	and	KNC	(MIC)	processors,	as	well	as	Haswell	(CPU)	and	KNL	(MIC)	processors.	The	
results	 demonstrate	over	 a	 3X	 improvement	over	 the	KNC.	 KNL’s	 high-bandwidth	memory	does	not	
give	as	much	of	a	performance	advantage	as	the	full	model	shown	in	Figure	4.	

We	suspect	that	cache	effects	in	the	kernel	are	the	main	reason,	noting	that	the	horizontal	grid	in	the	
extracted	kernel	was	only	10242	horizontal	points,	while	the	full	model	runs	were	on	a	grid	of	40962	
points.		
	

0.211	 0.241	

0.42	 0.42	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

IvyBridge	-	PGI	 IvyBridge	-	Intel	 K40	GPU	-	parallel	 K40	GPU	-kernels	

Ru
nD

m
e	
(s
ec
)	

atm_compute_dyn_tend	



	

	

	
Figure	6:	Performance	of	same	standalone	kernel	as	described	in	Figure	5	above,	for	same-generation	CPU	and	MIC.	LHS	is	SandyBridge	
and	KNC.	RHS	is	Haswell	and	KNL,	where	KNL	time	was	measured	with	and	without	MCDRAM	(HBM).	
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